Library news

New book

Strong Interactions in Spacelike and Timelike Domains: Dispersive Approach provides the theoretical basis for the description of the strong interactions in the spacelike and timelike domains. The book primarily focuses on the hadronic vacuum polarization function, R-ratio of electron-positron annihilation into hadrons, and the Adler function, which govern a variety of the strong interaction processes at various energy scales. Specifically, the book presents the essentials of the dispersion relations for these functions, recaps their perturbative calculation, and delineates the dispersively improved perturbation theory. The book also elucidates the peculiarities of the continuation of the spacelike perturbative results into the timelike domain, which is indispensable for the studies of electron-positron annihilation into hadrons and the related processes.

New ebook

The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

New ebook
Archival historical image

Wolfgang Pauli received his habilitation from the University of Hamburg in 1924  – the same year he discovered his Nobel-Prize-winning exclusion principle – and delivered his inaugural lecture on 23 February. He was awarded the title of professor in 1926, then obtained a professorship in theoretical physics at the ETH, Zürich, in 1928. His tendency to forget about the audience, and think out problems as he went along, proved challenging for some students. But, as Markus Fierz pointed, they at least learned to think critically about a theory!

Available at the CERN bookshop

What is the universe really made of? How do we know? Follow the map of the invisible to find out... Over the last sixty years, scientists around the world have worked together to explore the fundamental constituents of matter, and the forces that govern their behaviour. The result, so far, is the ‘Standard Model’ of elementary particles: a theoretical map of the basic building blocks of the universe. With the discovery of the Higgs boson in 2012, the map as we know it was completed, but also extended into strange new territory. A Map of the Invisible is an explorer’s guide to the Standard Model and the extraordinary realms of particle physics. After shrinking us down to the size of a sub-atomic particle, pioneering physicist Jon Butterworth takes us on board his research vessel for a journey in search of atoms and quarks, electrons and neutrinos, and the forces that shape the universe. Step by step, discovery by discovery, we journey into the world of the unseen, from the atom to black holes and dark matter, and beyond, to the outer reaches of the cosmos and the frontiers of human knowledge. Beautifully illustrated, with gradually evolving maps offering an inventive visual glossary as the journey progresses, A Map of the Invisible provides an essential introduction to our world, and to particle physics. It is a landmark work of non-fiction by one of the great scientists and science writers of today.

Available at the CERN bookshop

This book presents more than 300 exercises, with guided solutions, on topics that span both the experimental and the theoretical aspects of particle physics. The exercises are organized by subject, covering kinematics, interactions of particles with matter, particle detectors, hadrons and resonances, electroweak interactions and flavor physics, statistics and data analysis, and accelerators and beam dynamics. Some 200 of the exercises, including 50 in multiple-choice format, derive from exams set by the Italian National Institute for Nuclear Research (INFN) over the past decade to select its scientific staff of experimental researchers. The remainder comprise problems taken from the undergraduate classes at ETH Zurich or inspired by classic textbooks. Whenever appropriate, in-depth information is provided on the source of the problem, and readers will also benefit from the inclusion of bibliographic details and short dissertations on particular topics. This book is an ideal complement to textbooks on experimental and theoretical particle physics and will enable students to evaluate their knowledge and preparedness for exams. .


Subscribe to Library news

You are here